Nonaxisymmetric instabilities of neutron star with toroidal magnetic fields
نویسندگان
چکیده
Aims. Super magnetized neutron stars of ∼1015 G, magnetars, and magnetized protoneutron stars born after the magnetically-driven supernovae are likely to have very strong toroidal magnetic fields. Methods. Long-term, three-dimensional general relativistic magnetohydrodynamic simulations were performed to prepare isentropic neutron stars with toroidal magnetic fields in equilibrium as initial conditions. To explore the effects of rotations on the stability, simulations were done for both nonrotating and rigidly rotating models. Results. We find the emergence of the Parker and/or Tayler instabilities in both the nonrotating and rotating models. For both nonrotating and rotating models, the Parker instability is the primary instability predicted by the local linear perturbation analysis. The interchange instability also appears in the rotating models. It is found that the Parker instability cannot be suppressed even if the stars rotate rapidly. This finding does not agree with the perturbation analysis, because rigidly and rapidly rotating stars are marginally stable; therefore, in the presence of stellar pulsations that deform the rotational profile, unstable regions develop with a negative gradient of the angular momentum profile. After the onset of the instabilities, a turbulence is excited. In contrast to the axisymmetric case, the magnetic fields never reach a state of equilibrium after the the turbulence develops. Conclusions. Isentropic neutron stars with strong toroidal magnetic fields are always likely to be unstable against the Parker instability. Turbulent motion is induced and maintained for a long time. This conclusion is different for axisymmetric simulations and suggests that three-dimensional simulation is indispensable for exploring the formation of magnetars or the prominent activities of magnetars such as giant flares.
منابع مشابه
Nonaxisymmetric Magnetorotational Instability in Proto-Neutron Stars
We investigate the stability of differentially rotating proto-neutron stars (PNSs) with a toroidal magnetic field. Stability criteria for nonaxisymmetric MHD instabilities are derived using a local linear analysis. PNSs are expected to have much stronger radial shear in the rotation velocity compared to normal stars. We find that nonaxisymmetric magnetorotational instability (NMRI) with a large...
متن کاملMagnetic field evolution in magnetar crusts through three-dimensional simulations.
Current models of magnetars require extremely strong magnetic fields to explain their observed quiescent and bursting emission, implying that the field strength within the star's outer crust is orders of magnitude larger than the dipole component inferred from spin-down measurements. This presents a serious challenge to theories of magnetic field generation in a proto-neutron star. Here, we pre...
متن کاملThe Effect of Neutrino Radiation on Magnetorotational Instability in Proto-Neutron Stars
Neutrino radiation takes a major role in the momentum, heat, and lepton transports in protoneutron stars (PNSs). These diffusive processes affect the growth of magnetorotational instability (MRI) in PNSs. We perform a local linear analysis for the axisymmetric and nonaxisymmetric MRI including the effects of neutrino transports and ohmic dissipation. We find that the MRI can grow even in the mu...
متن کاملNonaxisymmetric Rossby Vortex Instability with Toroidal Magnetic Fields in Radially Structured Disks
We investigate the global nonaxisymmetric Rossby vortex instability in a differentially rotating, compressible magnetized accretion disk with radial density structures. Equilibrium magnetic fields are assumed to have only the toroidal component. Using linear theory analysis, we show that the density structure can be unstable to nonaxisymmetric modes. We find that, for the magnetic field profile...
متن کاملMagnetic field evolution in neutron stars
Neutron stars contain persistent, ordered magnetic fields that are the strongest known in the Universe. However, their magnetic fluxes are similar to those in magnetic A and B stars and white dwarfs, suggesting that flux conservation during gravitational collapse may play an important role in establishing the field, although it might also be modified substantially by early convection, different...
متن کامل